Rating:

Date added: 20.3.2015

979 163

FB2PDFEPUB

This work represents a rigorous account of quantum gauge field theory for bundles (possibly non-trivial) over compact surfaces. The Euclidean quantum field measure describing this theory is constructed and loop expectation values for a broad class ofMoreThis work represents a rigorous account of quantum gauge field theory for bundles (possibly non-trivial) over compact surfaces. The Euclidean quantum field measure describing this theory is constructed and loop expectation values for a broad class of Wilson loop configurations are computed explicitly. Both the topology of the surface and the topology of the bundle are encoded in these loop expectation values. The effect of well-behaved area-preserving homeomorphisms of the surface is to take these loop expectation values into those for the pullback bundle. The quantum gauge field measure is constructed by conditioning an infinite-dimensional Gaussian measure to satisfy constraints imposed by the topologies of the surface and of the bundle. Holonomies, in this setting, are defined by interpreting the usual parallel-transport equation as a stochastic differential equation. Gauge Theory on Compact Surfaces by Ambar Sengupta